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Abstract

Every data packet has to pass through few intermediate nodes to reach its destination.

Among other reasons, tremendous growth in internet devices encourages those intermediate

nodes to drop the data packets. Optimizing the data packet route is an effective solution

to deal with packet loss. Advanced machine learning approaches have been identified as a

powerful support tool for routing optimization in node networks. Furthermore, as hardware

infrastructure develops, the capabilities of cloud computing have expanded enormously. Im-

proved connection, processing power, and memory units enable real-time machine learning.

This thesis suggests and evaluates a unique technique for optimising the packet path by one

hop for intermediate nodes as a backup called Cloud Acknowledgement Scheme. It offers

information on the transmission trend and the tendencies of certain adjacent nodes or groups

of neighbouring nodes in a network. We carried out a series of machine learning experiments

and validated our idea using real-world node data.
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Chapter 1

Introduction

The amount of network devices, globally, connected to IP networks is projected to reach

three times the global population in the near future [20]. This global trend in internet

usage generates tremendous internet traffic across the planet. Among the traffic, Machine -

Machine (M2M) applications such as smart meters, video surveillance, healthcare monitoring

and IOT devices are the major contributors [59]. This means that every node in a network

has to transmit its information efficiently and effectively. Powerful routing techniques enable

networks to support the massive number of data transmissions.

Network routing is identifying a path that can communicate a data packet from a source

node to a destination node. There are several different existing routing policies to determine

the best route between nodes in a network. The common criteria for selecting the routing

methods are Cost minimization, maximization of link utilization, QoS Provisioning [13] as

shown in the Figure 1.1. Open Short Path First (OSPF) and Intermediate System to In-

termediate System (IS-IS) are two great examples that enforce configuarable link weights

to derive shortest paths [18][51]. Another type of well-known technique for routing opti-

mization methods is spanning trees and Particle Swarm Optimization (PSO) [28]. Routing

optimization techniques can be used for identifying the best route to obtain the best possi-

ble route between two nodes [21][60]. However, there are limitations for each of the existing

routing optimization methods. They are having distance-vector metrics, 15-hop limitations,

excessive routing traffic, and slow convergence are some of the drawbacks [6][22].

Therefore, routing optimization is an NP-hard problem that needs to be investigated

1
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(a) Shortest Path Based on Link Weights [60] (b) A Minimum Spanning Tree [10]

Figure 1.1: Traditional Routing Optimization Methods

with a novel and innovative methodology. Taking this into consideration, rapidly developing

technologies like cloud computing and machine learning have the potential to boost routing

optimization through new approaches [19]. Real-time machine learning with the help of the

cloud provides new potential for enhancing routing optimization [50][39].

1.1 Problem Definition and Research Objective

The purpose of this research is to design an approach that assists a node in identifying the

best node among all the neighboring nodes to retransmit a data packet whenever a node

encounters a packet drop scenario. The best node refers to the situation when there is a high

likeliness in the next packet transmission through that particular node will be a successful

transmission. A survey on machine learning techniques for routing optimization suggests

that there are successful methodologies that help in route optimization [43]. However, all

these techniques compel all the nodes in a network to implement their methodologies. Thus

the objective is to provide machine learning-driven suggestions to the nodes in a network

as a backup option. More complications are expected to develop machine learning models

to identify and predict the packet drop patterns. Selfish or malicious nodes in a network

usually follow a certain packet dropping pattern in a specific period. It will be challenging

to forecast the packet droppings without prior observations.
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1.2 Solution Overview

The researcher proposes a novel approach using a cloud acknowledgment scheme (CACKS)

and machine learning techniques. CACKS exploits acknowledgment packets that are gen-

erated by the nodes in a network and offers backup services to nodes affected by failed

transmissions due to packet droppings in the network. In CACKS, the cloud collects all

the acknowledgment packets produced in a network and uses them to extract knowledge

about a particular network. The packets provide information on the active nodes that can

communicate and also on all other data-packet transmissions across the network as well. All

the data is collected by the cloud and used to monitor the network. This phase hybridizes

a network’s environment by reintroducing centralization in a network while preserving the

network’s decentralized character.

The collected node values are then portrayed as time-series data that are later used to

observe the trends and seasonalities of the network nodes. Advances in machine learning

techniques have allowed for real-time predictions of trends [35]. In this research, to uncom-

plicate the data and model, data was collected as univariate time series. Therefore univariate

time series data is very simple and less burdensome on the cloud to forecast the tendency of

a node. LSTM and N-Beats models are used to develop a predictive model based on previ-

ous transmission outcomes. Both LSTM and N-Beats models are compared with each other

as well as with a persistence model for accuracy. Persistence algorithm, the näıve forecast

method is the most common baseline method that utilizes persistence algorithm for time se-

ries data. This model forecasts the values based on previous transmission outcomes. LSTM

models are deep recurrent neural networks that can provide the forecast of a node tendency

based on a long sequence of previous transmission outcomes. LSTM can perfectly handle

long-term dependencies and can capture seasonalities in the packet droppings of the node

transmission data. N-Beats models are deep and fully connected residual neural network

that deals with univariate time series data which is perfect for this research. Furthermore,

N-Beats achieved the best univariate time series forecasting model in the M4 competition.

The researcher expected that it is considerably more challenging to build and test a

platform without a robust packet-level network simulation tool that can integrate machine

learning methods during this research. For this reason, the researcher aims to prove that node
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packet droppings can be forecasted and pseudocode is developed to achieve the objective by

utilizing cloud services.

1.3 Scope

Seven days of data is collected by observing a node’s transmissions. Continuous ICMP

packets with 64 bytes are transmitted to a node every sixty seconds. Successfully transmitted

data packet’s response is collected and organized along with the sent data packets. For every

successful packet transmission, a reward of +1 is given and a penalty of -1 is given to this

node whenever this node drops a packet. Data is collected by taking the aim of this research

into consideration that is to be able to forecast the packet droppings based on previous

transmission outcomes.

1.4 Contributions

The principal contributions of this thesis are:

� A novel cloud-node communication model is introduced in order to allow the cloud to

monitor the packet transmissions across the network.

� Three machine learning models are built, trained, and tested for the cloud to assist

nodes that need to help in data packet retransmission whenever they experience packet

droppings.

� A dataset is developed with the trasnmission history of a selected node by observing

a particular node for few days in order to train the machine learning models with a

node’s packet dropping background.

1.5 Thesis Structure

The rest of this thesis is structured as follows. Chapter 2 provides a review of background

information. The proposed scheme and approach are designed in detail in Chapter 3. In
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Chapter 4, empirical investigations provide the findings of this research. Finally, in Chapter

5, the conclusion is provided.
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Chapter 2

Background Studies

2.1 Internet Architecture

The architecture of the internet is always dynamic because of the endless transformation of

technologies, topologies, devices, and services. Considering the scale of the internet, it is very

challenging to describe the structure of the internet [30]. Streamline internet architecture is

explained as a distributed system made up of multiple smaller networks owned by Internet

Service Providers (ISP), universities, governments, and other organizations that are linked

together with peering agreements.

Broadly, the internet can be outlined into three levels as shown in the Figure 2.1. They

are:

� Backbone ISPs

The internet backbone is the collection of multiple smaller networks. It consists of ac-

cess links that bring the smaller network traffic to high bandwidth routers that transmit

the traffic from its source node to the destination over the best available path. Usu-

ally, giant network carriers called Tier 1 ISPs like AT&T, Cogent Communications,

Deutsche Telekom, NTT Communications, Tata Communications, Telia Carrier and

Verizon are some of the major backbone providers. Collectively these networks cre-

ate a massive worldwide network that has the entire routing table. Backbone ISPs

are connected to each other at Internet Exchange Points (IXP) also called peering

7
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points. It is the location of high-speed routers and switches that move traffic among

backbone ISPs. It is not owned by any of the Tier 1 ISP instead funded by them

but do not charge each other for high-speed transmissions among the backbone ISPs.

This interdependence is called settlement-free peering. Usually, backbone ISPs equip

the available fastest routers with upto 100 gbps trunk speed. Companies like Cisco,

Extreme, Huawei, Juniper and Nokia offer these high speed routers and switches [30].

� Regional ISPs

Backbone ISPs provide access to their high-speed high-bandwidth routers and switches

to smaller Tier 2 and Tier 3 ISPs. Tier 3 ISPs provide internet connections to the clients

like individuals and businesses. However, Tier 3 ISPs have no connection to the larger

backbone networks. Hence the Tier 2 ISPs provide Tier 3 ISPs access to their small

regional networks. Simultaneously, Tier 2 ISPs buy access to the expensive global

backbone networks.

� Clients

Clients are the consumers of the internet. Businesses and individual homes subscribe

to the Tier 3 ISPs for internet connection.

Figure 2.1: Different Levels of Internet Service Providers
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2.1.1 IP Address

For the routers or switches to transmit data packets across the networks, addresses of the

devices attached to the network are necessary. Each device connected to a network has its

unique address called Internet Protocol (IP) address. The IP address might be unique but

they are not always permanent [9]. Generally, there are two different types of IP addresses.

They are public IP addresses and private IP addresses. Every computer, smartphones, IOT

devices, Bluetooth speakers have their private IP addresses. However, within public IP

addresses, there are two types of are IP addresses that need to be discussed [38]. They are:

� Dynamic IP addresses

ISP often purchases a large pool of IP addresses from the backbone or regional ISPs

and assigns them to their customers. However, they are regularly re-assigned to other

customers or put back into the un-assigned pool of IP addresses. Constantly changing

IP addresses is a way to secure devices against hackers.

� Static IP addresses

On the other hand, static IP addresses are in contrast to dynamic IP addresses. Some

devices like servers, powerful switches, and high-bandwidth routers need to be fixed

at a location. A constant IP address needs to be assigned to these kinds of devices.

Hence, static IP addresses that most likely never change over a period of time are

assigned to them.

2.1.2 Data Packets

The network transmissions happen in the form of data packets. A format and a medium of

transmission are essential for a node to communicate with another. Data packets act as a

means to carry data or messages. They are the smaller chunks of a larger message [5]. Data

packets not only hold the data but also carry a certain type of metadata for addressing,

error correction, type of the data packet, routing information and organizing data packets.

Figures 2.2 and 2.3 displays the architecture of a Transmission Control Protocol (TCP)

packet architecture through a basic figure of TCP anatomy and real-world TCP packet

details.
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Figure 2.2: TCP Packet Anatomy [46]

Figure 2.2 shows the constituents of a TCP packet. Along with the data, it contains the

metadata of the TCP packet like [46]:

� Source port and destination port to address the end points of the connection.

� Sequence number of the first byte of the data in TCP data packet

� Acknowledgement number is the sequence number of the next data packet

� Data offset is the length of the header

� Reserved field the empty field for the future use

� Flags are for indicating the type of the data packet

� Window size is the buffer space of the sender’s receiving Window

� Checksum is used for error correction of the data packet

� Urgent pointer field provides the information of the byte that needs to be addressed

urgently

� Options field specifies the various TCP options like Maximum Segment Size (MSS),

Window Scaling, Selective Acknowledgements, Timestamps and No Option (nop)
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Figure 2.3: Real World TCP Packet

Packet Flags

There are different kinds of TCP packets. To indicate the type of the TCP packet, packet

flags are used. Packet flags also provide additional information like troubleshooting purposes

or to manage the operations of a particular connection along with the state of the connection

[12]. Each TCP flag size is about 1 bit. There are 7 different types of TCP packet flags.

They are:

� ACK - Acknowledgement flag is used to indicate the successful receipt of a packet.

� FIN - Finish flag is used to let the receiver know that there are no more data packets

to send and indicates the end of transmission

� URG - Urgent flag informs the destination to process urgent packet before processing

the other packets

� PSH - Push flag informs the transport layer to transmit push packets from application

layers to network layer without any delay

� RST - Reset flag is used to terminate the connection because of unexpected transmis-

sion to another host that is not expecting the TCP packet.
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� ECE - ECN - Echo (Explicit Congestion Notification - Echo) denotes if the TCP peer

has ECN option.

� CWR - Congestion Window Reduced flag is used if the sender receives a ECE flag

packet.

Figure 2.4 displays the actual acknowledgement packet with packet flag set to ACK.

Acknowledgment packets do not hold any payload. However, it contains the metadata of a

TCP packet similar to a regular TCP packet that carries data.

Figure 2.4: Usual TCP Acknowledgement Packet Structure

TCP NAK Option

Among other options, Request For Comments (RFC) 1106 suggests the use of Negative

Acknowledgement packets (NAKs) [27]. This option allows the destination node to inform

the sender that a data packet is not received or needs retransmission. This option is useful

if the nodes in the path experience any periodic errors like packet droppings, packet loss, or

noisy links. Following the information provided by this option is voluntary. It does not have

any effect on the TCP transmissions if ignored.
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2.1.3 Network Routing

A data packet requires traveling across one or more networks to reach its destination. Net-

work routing is the procedure to identify the best path from the sender node to the desti-

nation node. For the internet, routing decisions are made by routers in the network. Figure

2.5 illustrates a decision making scenario by a router. The router connected to computer A

needs to decide the best route to reach computer B. The path where Network 2 and 4 seems

short but it has high latency. However, Networks 1, 3, and 5 have low latency but it is a

longer route. The router needs to decide the path for the data packets.

Figure 2.5: Duty of Router in Network Routing [21]

Routers usually refer to the internal routing tables to determine the route to a destination

node. The network layer in the devices is responsible for the routing process to deliver data

packets by choosing the optimal path.

2.2 Cloud Computing

Cloud computing is the on-demand delivery of computing resources via the internet. The

services include applications, physical &virtual servers, data storage, development tools,

networking capabilities and processing power. These services can be hosted by remote servers

as well as on-premise servers.
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Virtualization is the key technology that allows the cloud environment to share the phys-

ical instance of a resource or an application among multiple customers or organizations [3].

It allows multiple customers or organizations to share the same application from different

locations. Similarly, single physical hardware is emulated into multiple virtual environments

called virtual machines (VM). A software called hypervisor abstracts the underlying ma-

chine’s resources like processing power, storage and cloud-based applications and lets them

be allocated into centralized pools that are available for cloud service deployment as virtual

machines [7].

There are different models of cloud services. They are illustrated in the Figure 2.6 as:

� IaaS - Infrastructure as a Service refers to the provision of fundamental computing

resources like essential compute, storage and networking [47].

� PaaS - Platform as a Service includes services like development tools, database man-

agement and business analytics. Moreover, operating systems can also be deployed

along with all the services available with IaaS [48].

� SaaS - Software as a Service is the delivery of software application as a service over

the internet [49].

Figure 2.6: Cloud Service Models [49]
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2.3 Machine Learning

According to Arthur Samuel who coined the term Machine Learning (ML), it is defined as

”Field of Study that gives the computers the capabilities to learn without being explicitly

programmed” [11]. ML is a branch of Artificial Intelligence (AI) and computer science that

makes use of data and algorithms to imitate human learning capabilities. Machine learning

algorithms can extract patterns in data and learn from them, to make their predictions.

Therefore, machines are capable of solving complex problems and take actions with little or

no human intervention by automating the process [1]. The basic assumption of ML is to

build and train models that can receive input data and use statistical analysis to obtain the

output. In 1997, Tom Mitchell defined ML mathematically and relationally as,

a computer program is said to learn from experience E with respect to some

class of tasks T and performance measure P, if its performance at tasks in T, as

measured by P, improves with experience E [2].

2.3.1 Types of Machine Learning

Machine Learning can be classified into 3 types of algorithms. They are detailed in the

following subsections.

� Supervised Learning

� Unsupervised Learning

� Reinforcement Learning

Supervised Learning

Supervised learning algorithms are mathematical machine learning models that train on a

collection of data points that includes both inputs and corresponding outputs. Dataset D,

for example, is a collection of data that includes a as inputs and b as output labels. Dataset

D is divided into two subsets: a training set and a testing set. An ML algorithm learns the

hypothesis function h(a), which maps the input space A to the output space B. The learnt
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mapping function h(a) approximates the real mapping function f(a) between A and B, as

shown in the equation 2.1. The ML algorithm learns a hypothesis h(a) from the training

set, which is subsequently tested on the testing set to yield an error e. The error e quantifies

how successfully the ML algorithm generalizes inputs outside of D. The outputs b for a

classification issue are referred to as the class, and the challenge of determining the class for

a given a is referred to as classification.

f(x) = X → Y (2.1)

Another notable concept in supervised learning is regression. The job of estimating a

mapping function f(a) from input variables a to a continuous output variable b is known as

regression predictive modelling. Often the output variable y is a real-value and these are

often quantities like sizes and amounts [16].

Unsupervised Learning

Unsupervised learning is a sort of machine learning technique that is used to derive con-

clusions from datasets that contain input data but no labeled answers. We frequently do

not have clear labels for datasets, and even if we did, we would only have labels for a very

tiny percentage of the cases. This makes supervised learning harder for us to apply. When

the class b of the input data a is not provided, machine learning is referred to as unsuper-

vised. The learning algorithm splits the training set’s samples into groups in an attempt to

group comparable cases. These groups are known as clusters, and the process is known as

clustering. Although there are several clustering methods, approaches such as K-Means or

Self-Organizing Maps (SOM) are favored because they are simpler to visualize [40].

Reinforcement Learning

Reinforcement learning is the process of teaching machine learning models to make a series

of judgments. In an uncertain, possibly complicated environment, the agent learns to attain

a goal. A reinforcement model is presented in a game-like setting in reinforcement learning.

The computer uses trial and error to find a solution to the problem. To persuade the

computer to do what the programmer desires, the model is either rewarded or punished for
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the acts it does. Its strategy is to improve the overall return. Despite the fact that the

programmers choose the incentive policy, they provide no clues or ideas for how to solve the

game to the model. It is up to the model to discover how to do the job in order to maximize

the reward, beginning with completely random trials and progressing to complex tactics and

superhuman abilities. Reinforcement learning is presently the most effective approach to hint

at machine creativity by harnessing the power of search and numerous trials. Unlike humans,

artificial intelligence can learn from thousands of simultaneous gameplays if a reinforcement

learning algorithm is performed on a strong enough computer infrastructure [54].

2.4 Time Series Forecasting

Time series forecasting is an important part of machine learning. It is the crude concept

behind all machine learning based forecasting techniques [15]. Time series forecasting uses

the date and time elements in the data for better forecasting. Time series analysis is a

significant approach to involve to understand the different components of the time series

data; these components are often characterized as trend, seasonality, and cycle. Each of

these components portrays insights to various aspects of the data that can contribute to

accuracy in time series forecasting.

� Trend - Trend is defined as long term increase or decrease in the data. It can be linear

or nonlinear;

� Seasonality - Variations that repeat over a specific period such as a day, week, month,

season, etc.;

� Cycle - A cyclic pattern exists when data exhibit rises and falls that are not of fixed

period.

Traditionally, most time series data can be classified into two types regular and irregular

time series. If data is collected after every specific time period then it is considered as regular

time series, otherwise it is irregular time series data. Most of the stock price forecasting

models use data sets where points (values at a specified date and time) are recorded after

every second. Natural disaster time series in the form of volcano eruptions, earthquakes



18 CHAPTER 2. BACKGROUND STUDIES

and floods data are recorded irregularly. Similarly, time series can also be classified into

univariate and multivariate time series [24].

� Univariate time series - Univariate time series data consists of data with just the

time step and its data point. It does not hold any other variables that affect the target

(predicted) data point. Forecasting models for univariate time series consider only

previous values of the variable. These models are also referred to as ‘auto-regressive.

� Multivariate time series - Multivariate time series incorporates a variety of features

into the dataset. These features affect the current or future of the data point in some

way. Multivariate time series forecasting considers previous values of the variable as

well as other features. For example, humidity, air pressure and precipitation, etc, are

some of the features that play a major role in weather forecasting.

2.4.1 Stationarity

Stationarity is the property of a time series dataset. It means that the mean and variance

ceases to vary over time. Generally, most of the time series techniques consider that the

data is stationary. However, most time series datasets are non-stationary, which means they

have fluctuating components. Trend, Seasonality, and Cycles or a combination of the three

components can be observed in non-stationary time series data points [34]. The data points

in the stationary time series do not possess a temporal structure.

2.4.2 Autocorrelation and Partial Autocorrelation

Time series analysis and forecasting make extensive use of AutoCorrelation and partial au-

tocorrelation plots.

Autocorrelation Function

When it comes to AutoCorrelation Function (ACF), the series must be weakly stationary

for an ACF to make sense. This indicates that the autocorrelation for any given lag is the

same regardless of time.

If a series xt meets the following characteristics, it is considered to be stationary:
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� The mean E( xt) for all t is the same.

� The variance of xt for all t is the same.

� The covariance between xt and xt-1 for all t is the same.

At time t, let the value of the time series be denoted by xt. The correction between xt

and xt-h for h = 1, 2, 3, etc. of a given time series is provided by the ACF. In theory, the

autocorrelation between xt and xt-h is presented in the equation 2.2

Covariance(xt, xt-h)

Std.Dev.(xt)Std.Dev.(xt-h)
=

Covariance(xt, xt-h)

V ariance(xt)
(2.2)

Because the standard deviation of a stationary series is constant, the denominator in the

second expression happens. The last characteristic of a weak stationary series states that

the theoretical value of autocorrelation for a specific lag is the same across the whole series.

A stationary series has the same structure ahead as it does backward, which is an intriguing

characteristic. ACF patterns may be seen in many stationary series. However, the vast

majority of series seen in practice are not stationary. A persistent rising trend, for example,

violates the condition that the mean is the same for all t. Distinct seasonal patterns are also

in violation of this criterion [54].

Partial Autocorrelation Function

A partial correlation is a conditional correlation in general. It is the relationship between

two variables under the premise that we know and consider the values of another set of

variables. Consider the following scenario: y is the response variable, while A, B, and C are

predictor variables. The partial correlation between y and C is the correlation obtained by

taking into consideration how both y and C are connected to A and B.

This partial connection might be discovered in regression by comparing the residuals from

two separate regressions. First regression is the regression in which we predict y from A and

B. Second regression is the regression in which we predict C from A and B. Essentially, we

correlate the parts of y and C that A and B do not predict. Equation 2.3 defines the partial

autocorrelation [54].
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Covariance(y, C|A,B)√
V ariance(y|A,B)V ariance(C|A,B)

(2.3)

2.5 Time Series Models

The basic concept of time series forecasting is to predict the timestep y assuming that it has a

relationship with its previous timesteps. There are many ways to model a time series. Among

them, the following are three types of solutions for our time series forecasting problem.

� Persistence Algorithm

� Recurrent Neural Networks - Long Short Term Memory architecture

� Residual Neural Networks - N-Beats architecture

2.5.1 Persistence Algorithm

The persistence model is frequently used as a reference for determining the skill factor. It

is useful to determine whether a prediction model outperforms any simple reference model,

such as the persistence model. The persistence method is arguably the easiest approach to

generate a prediction. A persistence theory assumes that the future value of a time series is

determined on the premise that nothing changes between the present time and the prediction

time. For any time series problem, the persistence model predicts that the timestep value at

time t equals the timestep value at time t+1 as shown in the Equation 2.4. For this reason,

the persistence algorithm is also known as the naive predictor [55].

timestept = timestept+1 (2.4)

The model’s accuracy declines as the forecast time horizon increases, and this model is

typically insufficient for time horizons longer than one hour. The persistence model is used

as a reference in this context to measure the reliability of the other two models.
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2.5.2 Recurrent Neural Networks

Traditional neural networks have shortcomings, which recurrent neural networks solve. Tra-

ditional neural networks were unable to integrate reasoning about earlier events in the time-

line to inform future outcomes. Recurrent neural networks are networks that contain loops

that allow information to be retained.

Figure 2.7 displays the chunk of neural network. Here, A takes in some input xt and

returns a value ht. A loop allows data to be transferred from one network phase to the next.

Figure 2.7: Rolled RNN Chunk [52]

Because of these loops, recurrent neural networks appear strange. However, they are not

all that different from a conventional neural network. A recurrent neural network may be

thought of as many clones of the same network, each delivering a message to the next in line.

When the loop is unrolled as shown in the Figure 2.8, the chain-like structure of recurrent

neural networks demonstrates that they are closely linked to sequences and lists. They are

by far the most natural neural network architecture to apply for this type of data.

Figure 2.8: An Unrolled RNN [52]
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LSTM Architecture

Long Short Term Memory networks, abbreviated as LSTMs, are a kind of RNN capable

of learning long-term dependencies. Hochreiter and Schmidhuber (1997) introduced them,

and numerous others developed and popularised them in subsequent work. They perform

remarkably well on a wide range of problems and are now extensively applied.

LSTMs are deliberately designed to avoid the problem of long-term reliance. Remem-

bering knowledge over extended periods is essentially their default behavior. All recurrent

neural networks take the form of a chain of repeating neural network modules with a sin-

gle tanh layer. This recurring module in a typical RNN will have a pretty straightforward

structure. Although LSTMs have a chain-like structure, the repeating module has a dif-

ferent structure. Instead of a single neural network layer, there are four, each interacting

distinctively as shown in the Figure 2.9.

The horizontal line going across the top of the Figure 2.9 is the key to LSTMs. The cell

state is similar to a conveyor belt. It follows the whole chain, with only a few small linear

interactions. It is relatively simple for information to just travel over it unaltered.

Figure 2.9: LSTM Architecture [52]

The LSTM may delete or add information to the cell state, which is carefully regulated

by structures known as gates. They are a method of allowing information to pass through if

desired. They consist of a sigmoid neural net layer and a pointwise multiplication operation.

The sigmoid layer produces values between 0 and 1, indicating how much of each component

should be allowed through. A value of zero indicates that nothing is allowed to pass through.

A value of one indicates that everything is allowed to pass through. An LSTM has three of
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these gates to maintain and regulate the cell state. They are a forget gate, an input gate,

and an output gate.

If a basic LSTM cell is observed, the first step of the LSTM is to select what information

needs to be discarded from the cell state. This choice is determined through a sigmoid layer

known as the forget gate layer. It examines ht-1 and xt and returns a number between 0 and

1 for each number in the cell state Ct-1. A 1 denotes that the information should be kept

in its entirety. A 0 signifies entirely discarding the passed information. The forget gate is

defined in the Equation 2.5. where wf is the weight, ht-1 is the output from the previous time

step, xt is the current input and bf is the bias.

f t = σ(wf ∗ [ht-1, xt] + bf) (2.5)

The following step is to decide what additional information we will store in the cell

state. There are two components to this. First, a sigmoid layer known as the ”input gate

layer” with a sigmoid function it determines which values will be updated as defined in the

Equation 2.6. Following that, a tanh layer generates a vector of new cell values as defined

in the Equation 2.7, C̃ t, that might be added to the state. In the following phase, we will

combine these two to generate a state update.

C̃t = tanh(wC ∗ [ht-1, xt] + bC) (2.6)

it = σ(wi ∗ [ht-1, xt] + bi) (2.7)

The previous cell state, Ct-1, must be replaced with the new cell state, Ct. The preceding

phases have already determined what we should multiply the old state by ft, forgetting what

we agreed to forget previously. Then it * C̃ t is pushed to the new cell value, scaled by the

amount by which we opted to change each state value. The new cell state is formed by the

Equation 2.8.

Ct = Ct-1 ∗ f t + tt ∗ C̃t (2.8)

In the final stage, we must decide what we will produce as output. This output will also
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be dependent on our cell status, but it will be adjusted. First, we run a sigmoid layer to

determine which bits of the cell state will be output as defined in the Equation 2.9.

ot = σ(wo ∗ [ht-1, xt] + bo) (2.9)

To obtain the output value ht, the new state Ct is passed through a tanh layer and

multiplied by the output gate, as indicated in the Equation 2.10.

ht = ot ∗ tanh(Ct) (2.10)

2.5.3 Deep Residual Networks

According to research on the prediction accuracy of neural networks, increasing the depth

of a network frequently results in increased performance. However, merely stacking a high

number of layers in a network is not a reliable way to improve its speed [32]. Increasing the

depth of a network not only increases the computing cost of training it but can also make

training more challenging. The basic concept of ResNet is to provide a so-called identity

shortcut connection that bypasses one or more levels, as seen in the Figure 2.10 below. The

formulation of the building block is defined in the Equation 2.11. where x and y are the

input and output vectors of the respective layers under consideration. The residual mapping

to be learned is represented by the function F(x, Wi)

y = F (x,W i) + x (2.11)

When the Equation 2.11 is applied to the example in the Figure 2.10 that has two layers,

then F = W2σ(W1x), where σ denotes ReLu and the biases are ignored for less complications.

A shortcut connection and element-wise addition are used to execute the operation F + x.

The shortcut connections in Equation 2.11 add no more parameters or complexity to the

computation. After the addition, a second nonlinearity is used.
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Figure 2.10: A Residual Block [23]

N-Beats Architecture

N-Beats design approach is founded on two fundamental concepts. To begin, the foundation

architecture should be simple and general, yet expressive. Second, the design should not

rely on feature engineering or input scaling that is time-series specific. The suggested basic

building block of N-Beats has a fork design and is illustrated in Figure 2.11. For example,

take the l-th block, which accepts its corresponding input xl and produces two vectors x̂l

and ŷl. The first block in the model’s xl is the overall model input a historical lookback

window of a particular duration ending with the most recently observed observation. The

length of the input window is chosen to be a multiple of the forecast horizon H, and typical

values of x in our configuration vary from 2H to 7H. The remaining blocks, inputs xl are the

residual outputs of the preceding blocks. Each block produces two outputs: ŷl, the block’s

forward forecast of length H, and x̂l, the block’s best estimate of x, sometimes known as the

backcast, given the functional space restrictions that the block can employ to approximate

signals. The fundamental block is divided into two sections on the inside. The first portion

is a fully linked network that generates the forward θfl and backward θbl expansion coefficient

predictors. The backward gbl and forward gfl basis layers receive the corresponding forward θfl

and backward θbl expansion coefficients, project them internally on the set of basis functions,

and create the backcast x̂l and forecast outputs ŷl. The following equations describe the

functioning of the first section of the lth block as formulated in the Equation 2.12 [53].

hl,1 = FC(xl), hl,2 = FC l,2(hl,1), hl,3 = FC l,3(hl,2), hl,4 = FC l,4(hl,3). (2.12)
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θbl = Linearbl (hl,4), θ
f
l = Linearfl (hl,4) (2.13)

The LINEAR layer is a fully connected linear projection layer. This section of the

architecture is responsible for predicting the forward expansion coefficients θfl , with the

ultimate objective of maximizing the accuracy of the partial prediction ŷl by appropriately

mixing the basis vectors given by gfl . Furthermore, this section of the network predicts

the backward expansion coefficients θbl utilized by gbl to provide an estimate of xl, with

the ultimate objective of assisting downstream blocks by eliminating components of their

input that are not useful for forecasting. The network’s second section transfers expansion

coefficients θfl and θbl to outputs through basis layers ŷl = gfl (θ
f
l ) and x̂l = gbl (θ

b
l ). The

following equation 2.14 illustrate how it works:

ŷl =

dim(θfl )∑
i=1

θfl,iv
f
l , x̂l =

dim(θbl )∑
i=1

θbl,iv
b
l . (2.14)

θfl,i is the ith element of θfl , while vfi and vbi are the forecast and backcast basis vectors.

The role of gbl and gfl is to generate sufficiently rich sets (vfi )
dim(θfl )

i=1 and (vbi )
dim(θbl )

i=1 such that

their respective outputs can be appropriately represented by changing expansion coefficients

θfl and θbl .

Figure 2.11: N - Beats Basic Block [53]
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Blocks are arranged into stacks so that the current block’s backcast is subtracted from

its input and given as input to the next block, and the forecast vectors from each block are

combined to create the overall stack forecast as shown in the figure 2.12. The stacks are

linked together in a pipeline, with the backcast output of one stack serving as the input

for the next. The overall model forecast is then produced by adding the forecasts from all

stacks. The N-BEATS architecture has been shown to provide excellent performance on a

variety of commonly used time series forecasting datasets [53].

Figure 2.12: N - Beats Architecture [53]
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Chapter 3

Design of Proposed Scheme and

Approach

3.1 Overview

In decentralized networks, all nodes in the network are not aware of each other’s transmis-

sions. Therefore, no node in the network can keep records of all the transmissions going

through the network. Thus, a network monitoring tool is appropriate to record all the

transmission outcomes of all the nodes in a network. Even though there are some powerful

network monitoring tools like Solarwinds network performance tool and Datadog network

performance tool, significant changes in the nodes are required to utilize them more effi-

ciently. Concurrently, a minimal modification is desired in the network nodes and insignif-

icant or least possible burden on nodes is preferred. All the criteria are pointing towards

employing a cloud to monitor the network. To meet the criteria of the least possible burden

on the network nodes, acknowledgement packets are identified as the best option to use as a

means of communication between nodes and the cloud. This scheme that employs the cloud

as a monitoring tool and acknowledgement packets as a means for communication is called

Cloud ACKnowledgement Scheme (CACKS).

As a solution to the challenge mentioned in the problem statement, CACKS is designed

to monitor and provide a particular type of cloud service as a backup to the nodes in a

network. CACKS uses specially formed ACK and NAK packets as means to monitor the

29
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data communication activity in a network. CACKS utilizes the location of the data packet

and the status of the transmission for monitoring nodes in that particular network.

In this research, we focus on providing backup services to nodes in a situation in which a

node has to reforward the data packet. This approach also aims to identify the decent nodes

in a network by gauging the performance of the nodes and avoid the data communication

through the nodes with the least performance. The nodes with the least performance are

more likely to be selfish nodes and malicious nodes [37]. The performance of a network is

greatly dependent on the individual performance of the nodes. All the nodes in the network

must work with each other to deliver the best functioning network. So it is essential to

identify the selfish nodes in the network to improve the overall performance of the network

[63]. A node is declared as a selfish node if it aims to benefit itself. It practices selective

communication or no communication of data packets to conserve energy. These selfish nodes

make a network sluggish and slow. Similarly, malicious nodes are described as the nodes

with the following characters

1. Packet Drop

2. Delay

3. Link Break

4. Message Tampering

5. Denying from Communication

6. Fake Routing

7. Node not Available

8. Stealing Information

9. Session Capturing
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3.2 Assumptions and Notations

In this section, we describe all assumptions that were put forward to develop our proposed

scheme as well as our proposed scheduler. Moreover, we list all notations used with their

corresponding definitions in Table 3.1.

3.2.1 Assumptions

� The Cloud is within the range of the network.

� The cloud is neither malicious nor faulty.

� The receiving and the transmission range are the same for all Virtual Machines (VM s)

in the cloud. Also, all VM s are working correctly.

� Each VM can accept and process only one task at a time.

� All VM s are identical to each other.

� All tasks are considered as Non-preemptive, where the task is given resources until it

gets terminated or it reaches a waiting state.

� Subtasks are not allowed to split to compute in other VM s.

� All the tasks are computationally intensive and mutually independent, while the task

subsets are collectively dependent.

3.2.2 Notations

Table 3.1: Description of Notations Used in Proposed Scheme

Symbol Description

VM Virtual Machine

Ntasks No of tasks waiting in the pool

Tx Task ID

Vj Virtual Machine ID of jth VM
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Continuation of Table 3.1

Symbol Description

ai Acknowledgement ID of ith packet

Nack Number of Acknowledgements in a task Tx

STx Size of the task Tx

Spdj Speed of VM of Vj

Ej Energy consumption per unit time of Vj

TCTj Time to compute a task Tx

ECai Expected Communication time of an acknowledgement ai

EPa1 Expected time to process an acknowledgement ai

h Hop count of a task Tx

fj Frequency of a VM Vj

Vmax Maximum number of VM s allowed

DTx Deadline for a task Tx

Bm A Batch of tasks

3.3 CACKS Design

Among the different types of data packets, two types of packets are altered and implemented

in the CACKS approach for data collection. They are Acknowledgement packets (ACK)

and Negative Acknowledgement packets (NAK). The flags field indicates the nature of the

transmission. To distinguish each packet type, Table 3.2 indicates the packet types and its

flags or options.

Table 3.2: Data Packet Types and Data Packet

Packet Type General Acknowledgement NegativeAck
Packet Flag or Option PSH ACK NAK

.
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3.3.1 CACKS Modified Acknowledgement Packets

A TCP ACK packet holds the information about the transmission of a particular data packet

in a series of data packets [57]. The source Node Address, destination Node Address, and

sequence number included in the packet are of special importance. ACK packets do not hold

any payload which makes the packet light to transmit. An ACK number is also included

along with flags, window size, and checksum to represent some of the fields required in a

TCP/IP transmission.

However, just the above-mentioned data about transmission is insufficient to capture the

big picture of the transmissions. Therefore, along with the standard fields, a modified ACK

packet incorporates two more address fields as shown in the Figure 3.1. The new fields are

current Node Address, which contains the address of the node holding the data packet, and

forwarded Node Address, which contains the address of the neighboring node to which the

data packet will be forwarded. These extra fields allow the cloud to monitor the status of

the transmissions using CACKS. The modified ACK packet provides the whereabouts of a

particular data packet in transmission.

Figure 3.1: Modified ACK Packet

Whenever the destination node receives a corrupted packet, it responds with a NAK

indicating that the packet was received in a corrupt state. Simultaneously, the NAK packet

also represents the packet droppings when received by the sender. This signal prompts the

sender to retransmit the packet. Another situation is when the sender node misses an ACK

packet, it indicates packet loss and the destination node did not receive a data packet at all.

The sender node will retransmit lost data packets after a certain time. Therefore, including

an additional address field that carries attempted forwarding Node Address gives away the

intermediate location of the data packet as shown in the Figure 3.2. This feature can help
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to identify the node responsible for packet loss. This altered NAK packet holds information

about a node that does not respond to a connection that has already been established [45].

Figure 3.2: Modified NACK

Along with the modified packets, Pinitial ,Prequest and PINFO are three compact packets

that are very significant in this approach. Firstly, Pinitial is used by the sender node to begin a

transmission. Secondly, Prequest is used by the nodes to request data from the cloud. Finally,

PINFO holds the response to the information requested by the node.

3.3.2 CACKS Architecture

To monitor and collect data about each node’s transmission status in a network, this scheme

deploys a cloud. Unlike regular TCP/IP control flow as shown in Figure 3.3, where a sender

node initiates a data packet Pdata’s transmission and it takes place through a route with

few intermediate nodes Node A, Node B, Node C and Node X to reach a destination node.

The response acknowledgement packet Pack is generated by the destination node only. This

acknowledgement packet takes the same route as the data packet to reach the sender node.

Through this approach, it is not possible to monitor the complete network.

In the furtherance of the cloud to monitor the network, the regular network control must

be adjusted. Figure 3.4 demonstrates the approach of the cloud to monitor the network.

Assuming that a packet route is established between Sender and Destination with Node A,

Node B, Node C, Node X as intermediate nodes, the sender desires to initiate the transmission

of data packets. To commence the transmission, senders must secure a connection with the

cloud so that cloud is aware of the transmission. So as to connect to the cloud, Sender sends

a Pack(initial) to the cloud. This Pack(initial) is formed with the primary information like sender
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Figure 3.3: Normal Network Control Flow

Node Address and destination Node Address. This packet provides necessary information

for the cloud to set the monitoring procedure in motion. Once the setup for monitoring

procedure is complete, Cloud replies to the sender node with a Ping(). This action signals the

sender to proceed with the transmission of the data packet Pdata. So the Sender node starts

pushing data packets to the neighbour Node A and transmits an acknowledgement packet

Pack(A) to the cloud. Once Node A completes its initial formalities, it formulates a Pack(A)

that consists of current Node Address that is Node A’s address and forwarded node’s address

which is Node B in this scenario. Acknowledgement packet Pack(A) provides the information

of the location of the data packet to the cloud, which is Node B. Similarly, after Pdata reaches

Node B, an acknowledgement packet Pack(B) is formulated and transmitted to cloud. This

process repeats until the data packet Pdata reaches its destination node. The formulated

Pack(D) is forwarded to Cloud. When the cloud receives the final acknowledgement packet,

the cloud assumes that the Pdata reached its destination. Simultaneously the sender needs

to know the status of a data packet. For this reason, cloud forwards the acknowledgement

packet Pack(D) to the sender node. This process after receiving the Ping() from cloud repeats
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at a larger scale for every data packet in the sequence. This continuous acknowledgement

packet transmission to the cloud keeps it in the loop of the transmissions across the network

and monitors the status of the nodes in the network.

Figure 3.4: Cloud Acknowledgement Scheme Control Flow

In the scenario where there is no packet loss, the cloud acts as a simple monitoring tool.

Cloud and each of the node’s roles are described in the developed algorithms. There are three

algorithms named Cloud-site Algorithm, Sender-site Algorithm, and Intermediate Node-

site Algorithm. The sender-site Algorithm explains the procedure followed by the sender

node to initiate the packet transmission process. The Cloud-site Algorithm provides the

detailed description of the steps taken by the cloud after receiving Pack(initial) from the sender

node. The Intermediate Node-site Algorithm explains the protocol that an intermediate node

follows whenever a packet transmission occurs through it.

The following algorithm is the Sender-site algorithm. This algorithm begins when the

sender node wishes to communicate with the destination node. Sender node creates a

Pack(initial) that contains the addresses of itself and destination node. A timer starts and

expects the cloud’s response within the predefined time PT. If the cloud does not respond,

Pack(initial) is retransmitted. If the sender receives the response from the cloud in the form of

Ping(), it starts creating the data packet Pdata. This holds the data along with the header in-

formation like sender address, destination node address, and forwarding node address which
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is Node A. Once the data packet is transmitted to Node A, the sender formulates the ac-

knowledgement packet with Sender Node address and Destination Node address. If the

sender node receives any negative acknowledgement packet, it retransmits the data packet

with that particular sequence number.

Algorithm 1: Sender-site Algorithm

1. Sender Node creates Pack(initial) // Formulate the initial packet

(a) Include Sender Node address to Pack(initial)

(b) Include Destination Node address to Pack(initial)

2. Sender Node sends Pack(initial) to the Cloud

3. Count = 0, MAX = Set to Predefined Time (PT )

4. Increment Count by 1

(a) If (Count < PT & Node A received Ping from Cloud) Then

(b) Proceed

(c) Else-If (Count >= PT & Node A did not receive Ping () from Cloud) Then

(d) Resend Pack(initial) and go to Step 3

5. Sender Node creates Pdata // Create a regular data packet along with the following

additional data

(a) Include Sender Node address to Pdata

(b) Include Destination Node address to Pdata

(c) Include Node A address to Pdata

6. Sender Node forwards Pdata to Node A

7. Sender Node creates Pack(S)

(a) Include Sender Node address to Pack(S) //source address
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(b) Include Destination Node address to Pack(S) //destination node address

(c) Include Node A address to Pack(S) //forwarding node address

(d) Include Sender Node address to Pack(S) //current node address

8. Sender Node forwards Pack(S) to Cloud

9. Proceed with next data packet

10. If (Sender Node receives Pack(D)) from Cloud

(a) Proceed

11. Else if Sender Node receives NAK from cloud

(a) Repeat from step 5

The cloud-site algorithm describes the steps the cloud must follow for monitoring and

collecting data about the node’s transmission statuses. This process begins when cloud

receives Pack(initial) from Sender Node. After reading the header, it initiates a memory buffer

after validating the data packet and stores the acknowledgement packets coming from Sender

Node and intermediate nodes. If the Pack(initial) is corrupted, cloud sends a NAK to the

Sender Node. Cloud sends a Ping() to signal Sender Node to proceed with transmitting

data packets. Cloud starts a timer and waits for the acknowledgement packet from Sender

Node. If cloud do not receive Pack(S), a NAK is sent to Sender Node. Max count for each

acknowledgement packet from each of the intermediate nodes is set to Predefined Time PT.

For successful transmission from each of the intermediate nodes, the cloud rewards the node

by adding 1 to its node value. If the cloud does not receive an acknowledgement packet

from the forwarded node, the cloud subtracts 1 from its node value. The same step applies

if the cloud receives an invalid or corrupt packet. If the cloud receives a NAK from any

intermediate node, the cloud figures out that the forwarding node is not responding and the

unresponsive node loses 1 from its node value.

Cloud forecasts the likelihood of the next node’s transmission is a success or failure using

machine learning algorithms and the values are shared with the intermediate node. Forecast

values are shared with the intermediate node that is affected by the forwarding node’s packet
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Figure 3.5: Failed Intermediate Node Transmission Scenario

drop issue. Another condition for sharing the forecast values is that affected intermediate

node must request a cloud with a Prequest as shown in the Figure 3.5. This special Prequest

holds the intermediate node’s neighbor nodes addresses. Packet PINFO is created with the

forecast values and sent to the affected intermediate node. The NAK transmitted by the

affected intermediate node is forwarded to the Sender Node. Finally, if the cloud receives

Pack(D) from Destination Node, it is forwarded to the Sender Node once it is validated.

For example, as shown in the Figure 3.5, Node X is unresponsive and disconnected from

the packet route and represented by a red arrow. Therefore, Node C sends a Prequest to the

cloud. After cloud forecasts the node values of its neighbors Node P and Node I, a PINFO

is created and transmitted to the affected Node C. Later, Node C decides to continue data

packet transmissions through Node P and then through Node Q. Once the acknowledgement

packet Pack(D) reaches cloud from the destination node, the process concludes.

Algorithm 2: Cloud-site Algorithm

1. Cloud receives Pack(initial) from Sender Node // Start of processing sender node

(a) Parse Pack(initial)
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(b) Initialize a buffer memory slot

(c) Validate the Pack(initial)

i. IF (Pack(initial) is valid) Then

ii. Store Pack(initial) in the buffer

iii. Else

iv. Send NACK to Sender Node

(d) Process the contents of Pack(initial) // End of processing sender node

2. Ping Sender Node by sending a Ping()

3. Count = 0, MAX = Set to Predefined Time (PT )

4. Increment Count by 1 // Start of processing one intermediate node

(a) IF (Count ≤ PT ) Then

i. Wait until PT expires

ii. IF Pack(A) Received from Node A

A. Parse Pack(A)

B. Validate Pack(A)

C. IF (Pack(A) is valid) Then

D. Store in the buffer

E. Add 1 and then update the value of Node A in the Index

F. Else

G. Send NACK to Sender Node

H. Subtract 1 and the update the value of Node A in the Index

I. Process Pack(A)

J. Store in the buffer

iii. Else if NACK Received from Node A

A. Process NACK
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B. Subtract 1 and then update the value of Node B in the Index

C. IF P(request) received from Node A

D. Forecast the value of neighbouring nodes I, J, K, L //As shown in Figure

3.5

E. Create PINFO // contains forecasts of Node A’s neighbouring nodes I, J,

K, L

F. Send PINFO to Node A

iv. Else

A. Wait

(b) Else

i. Send NACK to Sender Node // End of processing an intermediate node

5. Pack(D) received from Destination Node // Start of processing destination node

6. Parse Pack(D)

7. Validate Pack(D)

(a) IF (Pack(D) is valid) Then

(b) Store in the buffer

(c) Else

(d) Send NACK to Sender Node and Destination Node

(e) Subtract 1 and the update the value of previous intermediate node in the Index

8. Process Pack(D) // End of processing destination node

9. Forward Pack(D) to Sender Node

The intermediate nodes require to follow some regulations as formulated in the following

Intermediate Node-site algorithm. Once the route is established among the nodes, interme-

diate nodes expect the data packets. Once the intermediate node receives the data packet
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Pdata it reads the destination address in the packet header. It simply forwards the data

packet to the next neighbor in the routing table. After transmission of the data packet, the

neighboring node must create the acknowledgement packet with Sender Node address, Desti-

nation Node address, and its own address. This acknowledgement packet is then transmitted

to the cloud. Whenever the intermediate node faces a challenge with an unreachable or un-

responsive issue with the next neighbor in the routing table, it can send a Prequest with the

address of all the potential neighbors. Simultaneously, it needs to send a NAK packet after

dropping the data packet Pdata. Afterward, when the cloud sends the forecast node values

of each neighbor, it can select one among them to continue the data packet transmission

Algorithm 3: Intermediate Node-site Algorithm

1. Node A Received Pdata from Sender Node

(a) Parse Pdata to check for Node B address

(b) Read destination address

2. If (Node B is reachable) Then

3. Forward Pdata to Node B

4. Create Pack(A)

(a) Include Sender Node address to Pack(A) //source node address

(b) Include Destination Node address to Pack(A) //destination node address

(c) Include Node A address to Pack(A) //currrent node address

(d) Include Node B address to Pack(A) //forwarded node address

5. Node A sends Pack(A) to Cloud

6. Else If (Node B is not reachable) Then

7. Drop Pdata

8. Create NAK
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(a) Include Sender Node address to NAK //source node address

(b) Include Destination Node address to NAK //destination node address

(c) Include Node A address to NAK //current node address

(d) Include Node B address to NAK //attempted forwarding node address

9. Send NAK to the Cloud

(a) Discover neighboring nodes // Nodes I, P are neighbors (as shown in Figure 3.5)

(b) Create Prequest

i. Include Node A address to Prequest //requesting node address

ii. Include Node P address, Node Q address to Prequest //neighboring node ad-

dresses

(c) Count = 0, MAX = Predefined time PT

(d) Node A sends Prequest to the Cloud

(e) Increment Count by 1

i. IF (Count ≤ PT ) Then

A. Wait until PT expires

B. IF PINFO Received from Cloud

C. Parse PINFO

D. Validate PINFO

E. IF (PINFO is valid) Then

F. Read PINFO

G. Select node with the best forecast value

H. Forward Pdata to Node K

ii. Else

A. Send NACK to Cloud

10. Else

(a) Forward Pdata to Node B
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3.4 Energy Aware Hybrid Scheduling Strategy

3.4.1 Overview

In this section, the reseacher proposes a new scheduling algorithm for the cloud. The main

aim of this scheduling approach is to sustain the ephemeral nature of the CACKS in a node

network. Generally, scheduling algorithms are classified into two types. The first type is

referred as an independent scheduling algorithm. The second type is referred as a work-

flow scheduling algorithm. Our proposed scheduling algorithm falls within or is classified

as an independent scheduling algorithm. This is because each acknowledgement task is au-

tonomous. Due to the comprehensive nature of the CACKS scheme, the scheduler consists of

two working algorithms, namely: variable time algorithm and variable frequency algorithm,

as shown in Figure 3.6. The scheduler toggles between these two algorithms based on cer-

tain circumstances, which we explain next. There are also other components in the scheduler

that help in supporting the proposed schedule algorithm. This includes a VM model that is

designed for virtual machines to optimize the energy consumption and performance, and a

meta-scheduler to organize the tasks as they arrive at the task-pool [61]. Each component

in this scheduler is explained in the following sections.

3.4.2 Meta-Scheduler

The meta-scheduler illustrated in Figure 3.6 is the virtual scheduling assistant to help the

scheduler minimize the time by preprocessing tasks to reduce the processing time required

by the scheduler. The main idea of having a meta-scheduler is to have an efficient scheduling

approach, especially when the lined tasks are picked from a broader pool. The meta-schedule

is a combination of two processes. The first process is to create a meta-data and tag the

data to the task. The second process is a continuous cycle that runs forever. During the

second process, the meta-scheduler refreshes the task pool by updating the number of tasks

available in the task pool and ready for execution. This process helps the meta-scheduler

to switch between the two developed algorithms when needed. The processes and control

required to handle tasks using the proposed meta-scheduler are illustrated in Figure 3.7.

When an initial acknowledgement, a0, arrives at the taskpool, a new task Tx is created and
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Figure 3.6: Scheduling Environment for the Cloud

remains in the task-pool until the task is assigned to a virtual machine. All acknowledgement

packets (a0, a1, a2,. . . , ai) of a particular task Tx are collected in the virtual machine and

processed. While meta-scheduler chooses to operate in a variable time algorithm, it maps

the tasks Tx (x = 1, 2, 3,. . . , n) to a specific VMVj (j = 1, 2, 3,. . . , m). The mapping is

done using a variable time algorithm to conserve energy as much as possible by mapping the

massive tasks to a VM with an optimum CPU frequency fj
opt(fj

min ≤ fj
opt ≥ fj

max). The size

of task Tx is STx, which is directly proportional to the number of hops h. Since it is possible

to retrieve h from Forward Information Base (FIB) with the total number of acknowledged

packets Nack [25], task Tx is always ahead by the value of 2 with respect to h. Categorically,

a task consists of multiple acknowledgement packets ai (i = 0, 1, 2, 3,. . . , n) that cloud

collects after a sender initiates packet transmission. Therefore, a sender S always sends two

acknowledgement packets (a0, a1) in the CACKS, where the size of these packets can be

computed using Equations 3.1 and 3.2.

Nack = h+ 2 (3.1)

STx = Nack (3.2)

The size of the task STx is required to determine the expected frequency of task Tx. The

TFTx of a task can be calculated using Equation 3.3. This information is required to feed

the current working algorithm in the cloud.
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Figure 3.7: Data and Control Flow of Meta-Scheduler
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TFTx =
n∑

i=0

(ECai + EPai) + VM Time required to respond with the outcome to sender S

(3.3)

If we consider the situation when (Ntasks ≤ Vmax) at the initial stages, then the active

algorithm is Variable Time Algorithm. Once the number of tasks N transcends the available

virtual machines Vmax, the meta-scheduler switches to the variable frequency algorithm.

After the sender initiates packet transmission, the cloud collects multiple acknowledgement

packets ai (i = 0, 1, 2, 3,. . . , n), at the same time there are processes running in parallel

within the meta-scheduler.

3.4.3 Scheduling Model

Variable Time Algorithm (VTA)

The variable time algorithm (VTA) algorithm is intended to emphasize energy conservation.

Variable time algorithm is a segment of our proposed work, providing an energy-efficient

method. This algorithm operates when the total number of tasks Nnum is falling short of

the total number of available virtual machines, Vmax. In this case, as soon as a task arrives

in the task-pool, it will be assigned to a running virtual machine. So, the total number of

tasks in the task-pool waiting to be executed should be empty. VTA also suspends the idle

VM s whenever there is no activity in a particular VM (i.e., Nnum < Vmax). It maintains the

suspended state as long as there is no new task waiting to be executed in the task-pool. At

the same time, VM maintains the optimum CPU frequency at minimum (i.e., fj
min= fj

opt)

considering fj
min = 38 percent of fj

max [29].

Whenever a new task arrives in the task-pool, it is assigned to an idle VM by the VTA

algorithm. The VM changes its state from idle to active as soon as the task is assigned.

If there is an active VM that just accomplished its task, the new task is assigned to that

active VM. Equation 3.4 is used to ensure that there is a fixed amount of time (time in the

active-idle state), in which the VM will be active but idle. During this time the VM is ready

to deploy if a new task swoops in the task pool; beyond this time VM suspends its activity

and shuts down.
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Time in Active - Idle state =
EnergyRequiredto(Turnoff + Turnon)anidleVM

EnergySpentonanIdleVMperunittime
(3.4)

The processes and the functions that are performed inside a single VM Vj are described

in VTA Algorithm. The optimum frequency fopt is set to a minimum frequency fmin to

conserve energy for any taken task in the virtual machine Vj. The TFTx is calculated by

meta-scheduler and tagged to the task and the resulting value is used as the deadline for a

particular task Tx. Time to compute TCTx starts and increases at a steady rate, and it keeps

on increasing until it reaches TFTx. A task is given the required resources to compute until

TCTx reaches TFTx. When TCTx exceeds TFTx, the task time out is sent to the sender, a

report is archived, and the task is killed. This information is related to this sub-task and a

report is created with this information.

Algorithm 4: Variable Time Algorithm (VTA) in a VM Vj

1. Set frequency fj = fmin

2. Foreach Vj = (V1,....,Vn) do

(a) Fetch task Tx

(b) Retrieve meta-data

(c) Process meta-data

(d) Count TCTx begins; TCTx ++

(e) If (TCTx <= TFTx)

i. Foreach Acknowledgement packet ai ( a1,....,an ) in Tx do

A. Receive ai

B. Process ai

C. Finish task Tx

ii. End If(NACK received)

A. Send NACK to sender node S



3.4. ENERGY AWARE HYBRID SCHEDULING STRATEGY 49

3. Until If (TCTx >TFTx)

(a) Send Time Out;

(b) Send Report

(c) Archive Report

(d) Kill the task

Variable Frequency Algorithm (VFA)

With our developed variable frequency algorithm (VFA), we focused more on the perfor-

mance by adjusting energy consumption. This algorithm elevated the performance of the

cloud processor by utilizing the batch scheduling concept [56]. This concept is reformed to

match the requirements of this scheme. The acknowledgement scheme requires a consider-

able amount of waiting time in which the cloud receives the acknowledgement packets from

nodes in the network. So, it is pointless to allocate a large number of resources to all the

tasks. Batch scheduling is the optimum strategy to conserve energy while providing great

performance. The VFA algorithm is triggered when the number of tasks in the task-pool

is waiting to be executed, Ntasks, surpasses the total number of VMs, i.e. Vmax. Algorithm

5 explains how VFA is processed. It is uncomplicated to create a batch Bs, because the

number of tasks is more than the maximum number of VMs. Thus, the batch size is equal

to the maximum number of VMs (Bs = Vmax). VFA is constrained with time deadline for

task Tx; thus, it is a significant factor in deciding the optimum frequency fopt of a certain

virtual machine. Equation 3.5 is used to calculate the fopt of a single task.

fopt =
STx

DTx − Start time of Taskx
(3.5)

The tasks which arrive in the task pool are taken into batches as soon as they arrive, so

the first come first serve (FCFS) approach is used to serve the upcoming batches. Once a

batch is filled up, the next batch is created. Each batch has a fixed amount of time in which

it should complete. Table 3.3 represents the VFA schedules tasks, using the BatchTask-VM

(BT-V) matrix with m batches, n tasks, and n VMs.
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Table 3.3: BT-V Matrix

BT-V V1 V2 . . . Vn

B1Tn B1T1V1 B1T2V2 . . . B1TnVn

B2Tn B2T1V1 B2T2V2 . . . B2TnVn

...
...

...
...

BmTn BmT1V1 BmT2V2 . . . BmTnVn

The function of VFA is represented in Algorithm 5. All the tasks are waiting to be

computed as batches. A batch contains vmax the number of tasks because all the tasks in a

batch are computed at once. Therefore, the maximum number of tasks that can be executed

at a time is equal to the maximum number of virtual machines. An empty path list is created

to map the tasks to VMs available. The time for each batch varies according to the task

with the nearest deadline, Tmax, which is assigned to the task with the shortest deadline in

the batch. All the tasks in a particular batch should be completed at the same time, that is

Tmax. The optimum frequency is calculated using Equation 3.5. The time to compute starts

and increases steadily at a uniform rate. The task is assigned resources until TCTx reaches

Tmax. After this case, a time-out message is sent to the sender. Then, a report with all the

events during communication is created and sent to the sender, and the task is killed.

Algorithm 5: Variable Frequency Algorithm (VFA)

1. Input: A FCFS task list in Task-pool = [T1,. . . ,Tn]

2. output: A Path List PL

3. PL = ϕ; //Empty path list

4. Set MAX = Vmax

5. Repeat for each Tx in Task-pool

(a) For each Bm in [B1,B2,. . . ,Bn]

i. Add Tx to batch Bm //Task is included in the batch

ii. Remove Tx from Task-pool
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(b) End for

6. Until Bm = MAX

7. Add Bm to PL // Batch is mapped with path list

8. Find least TFTx in Bm //Find task with least TFTx in the Batch

9. Read A path list PL

10. Repeat for each PL = [P1,. . . ,Pn]

(a) For each Vj = [V1,. . . ,Vn]

i. Set Tmax = Tx

ii. Inset PL 7→ Vj

iii. Calculate fopt

(b) End for

(c) Initialize TCTx to 0

(d) While (TCTx ≤ TFTx) Do

i. For each Acknowledgement packet ai(a1,a2,. . . ,an) in Tx do

A. Receive ai

B. Process ai

C. Finish task Tx

ii. End for

iii. Initialize TCTx to 0

iv. While (TCTx ≤ TFTx) Do

v. For each Acknowledgement packet ai(a1,a2,. . . ,an) in Tx do

A. Receive ai

B. Process ai

C. Finish task Tx

vi. End for
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vii. if (NACK received)

A. Terminate

B. Send NACK to sender node S

(e) Read TCTx

(f) End While

11. Until (TCTx > TFTx)

12. Send Time out

13. Create a report

14. Send the report

15. Archive report

16. Kill the task

3.4.4 Transition Time

Since our approach provides a hybrid scheduling algorithm, this section explains the steps

involved in the schedule to switch from VTA to VFA and vice versa. In the former, the

meta scheduler allows the task pool to expand with the arrival of new tasks. During this

process, the meta scheduler notifies VTA to switch to VFA. The VTA boosts its fopt to fmax

to finish all the remaining tasks that are running in the cloud at the switching moment. In

the latter, when the scheduler does not have enough tasks for creating a batch, the meta

scheduler signals VFA to switch and let VFA finish its current tasks.

3.4.5 Energy Model

This section explains the energy consumption of the VM for one task in CACKS for a node

network. Currently, data centers consume around 2 percent of the total power consumption

around the world, and consumption is expected to reach 8 percent in the coming years [26].

Within the data center, feeding power to various servers required 40 percent of the total
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energy consumed by the data center. At the same time, around 38 percent of total power

is invested in maintaining the cloud cooling system [44]. Figure 3.8 is the global trend of

energy consumption by the IT industry [36].

Figure 3.8: Energy Utilization Forecast [36]

Conserving energy makes a significant difference in both the environment and on the cloud

service provider. The aggregate energy exhausted by all tasks is huge. This expenditure does

not include energy spent while the VM is idle or while switching between VTA and VFA.

The total energy is calculated using Equation 3.6.

TotalEnergy = Computationenergy + Communicationenergy + Energytocool (3.6)

The cooling energy is the consumed energy spent on cooling the system during the pro-

cessing time of task Tx. The power of a computing machine is measured in terms of energy

per instruction (EPI). It is the average of the total amount of energy spent on task x and

calculated using Equation 3.7[31].

EPI =
Joules(J)

Instruction(I)
W/IPS (3.7)

The computation energy is the energy drained by the VM on task Tx. Equation 3.8 is

used to compute the energy spent by a VM. In this formula, we utilize the joules consumed
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per instruction and the computations processed for acknowledging packet ai in a VM, given

a frequency of fopt and denoted by Cf opt
ai.

ComputationEnergy =
n∑

i = 0

J

I
Cfopt

ai
(3.8)

The communication energy is the energy spent by a VM for receiving and sending a

task Tx and its subtasks. We assume that the communication between the VMs and meta

scheduler is insignificant. Equation 3.9 is used to calculate the energy spent to communicate

with the nodes involved in the task. Where, Tr is the time to receive an acknowledgement

packet, Ts is the time to transmit an acknowledgement packet, and Tw is the waiting time

for the meta-scheduler.

CommunicationEnergy =
n∑

i = 0

J

I
(Tr + Ts + Tw) (3.9)

3.5 Machine Learning Approaches

In this section, we discuss the theoretical approach of the machine learning phase for identi-

fying the best node among the intermediate nodes. To achieve this aim, data is very crucial.

So the subsection, data collection describes the tool used to collect raw data and the method

to extract the data points from the collected raw data. Therefore, data collection must be

followed by data normalization. Some metrics need to be decided upon the characteristics

of the results. Afterward, machine learning models must be designed to completely extract

the potential of the data to forecast the node value.

3.5.1 Data Collection

Data collection is the key challenge that must be deal with certain accurate methodology.

Hence, the concept of the structure of the data is substantial during the data source explo-

ration. In this approach, the proposal is to use a univariate dataset. Since the univariate

dataset is simple and imposes less burden on a cloud as well as quicker to train the machine

learning model with this dataset.
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The tool used to collect data for this approach is WinMTR. It is the graphical user

interface version of Matt’s TraceRoute. It is a very popular tool available for the Windows

platform [8]. WinMTR has the edge over traditional ping and traceroute programs. It

integrates the functionalities of ping and traceroute. This way WinMTR can measure the

availability of a node as well as hop-by-hop analysis using ICMP packets. There are few

advantages to using this tool. Firstly, this tool can capture packet loss and jitter [4]. Another

advantage of this tool is that it can continuously update the drop rate of the nodes in the

route. This provides a means to observe the nodes for comparatively longer times.

This method collects data by watching a real-world node for two days. They are a

workday (Wednesday) and a weekend (Sunday). Each data point represents the sum of

received and lost packets across the transmitted packets. Every 60 seconds, three packets

are broadcast over a certain node, and the procedure is repeated for 24 hours. The Figure

3.9 illustrates the data collection process. This process repeats for every packet sent through

the intermediate node.
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Figure 3.9: Data Collection Process Flow Chart
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3.5.2 Data Normalization

Some neural network models are sensitive to the scale of the input data. The difference in the

scale of the input variable may increase bias within those neural networks. If the maximum

and minimum observation values are greatly different, it makes the neural networks learn

large weight values or small weight values. Both of the cases result in inaccurate forecasting

because of challenges in generalizing the observations [14].

Data normalization addresses the issues caused by the sensitivity of the observations.

Normalization is the process of rescaling all the observations from their original range to the

new range between 0 and 1. This step is a part of data preprocessing the data before feeding

it to the neural network [17].

There are several types of normalization techniques, among them, the Min-Max normal-

ization technique is the preferred technique for node values dataset. Since the issue in this

dataset is the max and min value are too far apart. Using Min-Max, all the observations are

rescaled within the range of [0,1]. Equation 3.10 normalizes an observation x to between 0

which is new min and 1 which is new max with reference to the original scale range [min,

max ].

y =
(x - min) * (new max - new min)

(max - min)
+ newmin (3.10)

Data Splitting

In contrast to the traditional data splitting approach where the dataset is divided into

training, validation, and testing subsets, the node values dataset is divided into only training

and testing subsets. In time series forecasting there is a strong temporal dependency of the

previous observations on the current observations [62]. Therefore it is not fair practice to

use conventional validation techniques where the random samples are picked and assigned to

either the training set or the testing set. Accordingly, to preserve the temporal dependency

between observations, cross-validation on a rolling basis is adopted. Figure 3.10 explains

the notion of cross-validation on a rolling basis. It starts with a small portion of data as

a training set and another small portion as a test set. The first test is then added to the
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training data and the next set of testing values are tested against the later test set. This

process repeats for all the test sets.

Figure 3.10: Rolling Basis Cross Validation Technique [62]

3.5.3 Metrics Evaluation

Since node value predictions are continuous values, it is a regression problem. Test subset

is used to evaluate the model’s performance by using symmetric mean absolute percentage

error (sMAPE). Alternatively, accuracy is applied to each of the models to evaluate the

validity.

sMAPE is an alternative accuracy measure that deals with the limitations of Mean Ab-

solute Percentage Error (MAPE) forecast error measurement. Equation 3.11 generates the

sMAPE using forecast value Ft, actual value At for n number of observations [58].

sMAPE =
n∑

t = 1

|Ft − At|
(Ft + At)/2

(3.11)

Accuracy gives the fraction of correct forecasts and the total number of forecasts. Equa-

tion 3.12 shows the formula to calculate accuracy using True Positives TP which are correctly

forecasted values, False Positives FP which are incorrectly forecasted values, True Negatives
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TN which are correctly forecasted values, False Negatives FN which are incorrectly fore-

casted values [42].

Accuracy =
TP + TN

TP + FP + FN + TN
(3.12)

3.5.4 Machine Learning Approaches

Persistence Model

In this research, a persistence model is used as a baseline model. It simply forecasts the

node values based on the previous timestep observation. A Persistence model is defined

after splitting the train and test subsets. Baseline performance is determined after the

model forecasts the node values.

LSTM Model for Node Value Forecasting

LSTM models can be used to define univariate time series forecasting neural networks. Look

back concept for sequential data is used to forecast the node values based on the fixed number

of previous observations. Look back is simply relying on the number of previous observations

to use, to forecast the next observation. Since LSTM models can remember a long sequence

of observations, these models are presented with all of the data in batches, timesteps, and

input dimensions. They are the inputs for the LSTM model. One input sample is pushed to

the model at a time, which consists of an array with b * t * f. Where b is the batch size of

the input sample and f is the number of input dimensions that are fed to the network and t

is the number of time steps as represented in the 3D Figure 3.11. The LSTM model receives

one sample input and it attempts to forecast the next time step based on the fed input

sample. Look back technique allows the model to look n number of previous observations.

Specific values of b, t, f, and n are presented in Chapter 4.

Our network consists of a model that is deeply connected with an input layer, output

layers, and intermediate layers. The LSTM layer acts as the input layer, it is made up of

LSTM neurons. A chain of LSTM neurons receives the past information from the hidden

state from the last timestep and new information from the input data. The specific details

about the number of LSTM neurons and other layers are discussed in Chapter 4. The final
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Figure 3.11: Input Dimension Shape of LSTM

layer in the network is an output layer, a dense layer with dimensions of the desired out.

Since the node values are sequential, the dense output layer has one neuron. The model is

then compiled with a loss function and an optimizer.

N - Beats Model for Node Value Forecasting

N - Beats is another machine learning approach for forecasting node values. It is specially

designed to forecast the values of univariate time series. In this technique, the forecasts

are delivered based on the backcasts. The model takes node values data up to xt number of

observations as its input and forecast future node value xt + h, where h is the forecast window

length. The model learns the sequence of the node values over the look-back period. Look

back period is the size of the input n * H from the horizon as shown in the Figure 3.12. The

forecast period is H from the horizon.

Specific values of the forecast period and backcast period are mentioned in Chapter 4.

The node values are fed to the model along with the index values and series values. If there

are multiple groups within the same data, series values are used to identify each group. Since

node values are single series, the series column is always constant. The training data is fed as

batches to the model with a given network width. Width is decided along with the number
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Figure 3.12: N-Beats Time Series in Consideration[53]

of blocks, number of block layers, and prediction length. The width of the network is the

widths of the fully connected layers with Relu activation per block.

1. Number of Blocks - The number of blocks per stack.

2. Number of Block Layers - The number of fully connected with Relu activation per

block.

3. Prediction Length - It is the length of the prediction. It is also known as ’horizon’.

4. Context length - It is the length of the look back period.

All these parameters are required to define the N-Beats model. The number of blocks is

set to 3 for the interpretable forecast. Similarly, The number of block layers is set to 4. The

width of the network is 256 for the trend forecast block and 2048 for the seasonality forecast

block.
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Chapter 4

Empirical Studies

This chapter investigates the experiments carried out for node value forecasting including

data collection, node value data analysis, forecasting model development, and scheduling &

energy models simulation and performance evaluation. Data collection introduces the source,

tools, and method for collecting the node values. Data preparation is the process of arranging

the collected data to feed the machine learning models. Node value data analysis contributes

to the statistical analysis of the node values. Predictive model development demonstrates

the several model development methods, results, and comparison of the models. Scheduling

and energy models simulation and performance evaluation show the execution results of VFA

and VTA algorithms.

4.1 Data Collection

The node values are collected over two days by probing a node in a network. The aim of

collecting data is to capture the reaction of an intermediate node when a data packet is

transmitted through it. Therefore, ICMP packets are sent to the ’spectrum.com’ domain

every 60 seconds using the WinMTR network monitoring tool. The ICMP packets take 18

identifiable hops to reach the destination since the packets need to pass through one local

ISP then through one backbone ISP and then to the destination local ISP. The packet passes

through the following list of nodes to reach the destination as shown in the Table 4.1.

63
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Table 4.1: ICMP Packets Route to Destination

Hop IPAddress HostName DomainName
1 192.168.4.1 LocalComputer −
2 192.168.4.1 LocalComputerPrivateIP −
3 24.222.227.149 nwgl − asr1.eastlink.ca Eastlink
4 24.215.102.149 ns− hlfx− dr002.ns.eastlink.ca Eastlink
5 24.215.102.221 ns− hlfx− br002.ns.eastlink.ca Eastlink
6 62.115.147.124 motl − b2− link.ip.twelve99.net TELIANET − LIR
7 62.115.137.142 nyk − bb1− link.ip.twelve99.net TELIANET − LIR
8 62.115.141.244 rest− bb1− link.ip.twelve99.net TELIANET − LIR
9 62.115.123.123 ash− b2− link.ip.twelve99.net TELIANET − LIR
10 62.115.188.211 svc013937− ic325643.ip.twelve99.net TELIANET − LIR
11 209.18.43.58 209− 18− 43− 58.dfw10.tbone.rr.com CharterCommInc
12 66.109.5.164 − CharterCommInc
13 66.109.3.1 ae− 0− 0.c0.chi75.tbone.rr.com CharterCommInc
14 66.109.6.249 − CharterCommInc
15 165.237.51.255 165− 237− 51− 255.twcable.com CharterCommInc
16 165.237.51.244 165− 237− 51− 244.twcable.com CharterCommInc
17 165.237.4.135 165− 237− 4− 135.twcable.com CharterCommInc
18 165.237.25.109 165− 237− 25− 109.twcable.com CharterCommInc
19 142.136.168.58 twcdigitalphone.com CharterCommInc

.

An intermediate node nyk-bb1-link.ip.twelve99.net at hop 7 with IP addresses in the range

62.115.128.0 - 62.115.143.255 is selected to monitor since it shows the maximum tendency to

drop packets. Figure 4.1 illustrates the geographical location of the node. Currently, the IP

address of the node is 62.115.137.142 which is in the range mentioned before. ICMP packets

reach the chosen node at the 7th position from the source node. In Figure 4.1, the cyan color

represents the latency of the node. Even though the chosen node does not demonstrate the

maximum latency, it is dropping packets in reality.

The additional details about the selected intermediate node are mentioned below:

� NetRange : 62.115.128.0 - 62.115.143.255

� CIDR : not provided

� NetName : EU-TELIANET-20130924
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Figure 4.1: Geographical Location of the Selected Node

� NetHandle : TELIANET-LIR

� Parent : 62.115.0.0 - 62.115.255.255

� Origin : AS1299

� Organization : Telia Company AB

� Created : 2004-04-17

� Updated : 2020-12-16

� Address : 16979 Solna

� State and Country: Sweden

If the node transmits the sent ICMP packet, it replies with a response packet. The

response packet is collected by the local computer and updates the sent count and received

count for that node. Similarly, if the sent ICMP packets are dropped, the chosen node fails

to send a response packet. This action triggers the sender to update the sent count but the
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received count remains constant. This process repeats for every ICMP packet sent to the

chosen node.

4.2 Data Preparation

In this step, the raw data collected about the chosen node needs to be transformed as

univariate time series data. Therefore, the node value of a particular node initiates at zero

and a reward of +1 is awarded to its node value if a response is received for a sent ICMP

packet. Accordingly, a reward value of -1 is awarded when the node fails to respond to the

sent ICMP packet. This process is applied to the data collected during a weekday and a

weekend. Figure 4.2 illustrates the 5012 data points recorded on a weekday and 4.3 illustrates

the 5209 node values observed on a weekend, from the telia intermediate node. Since the

drop rate of this node is around 77.85% on the weekday and 78.96% on the weekend, a

gradual dip is observed on both graphs.
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Figure 4.2: Last 100 Node Values in a Weekday

Figure 4.3: Last 100 Node Values in a Weekend
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Graph of all the node values is very concentrated, therefore, a candle graph is prepared

as illustrated in the Figure 4.4 for weekday node values and Figure 4.5 for weekend node

values to observe the individual transmission outcomes. They are the graphs of the last 100

transmission results observed on a weekday and a weekend. The grey indicators show the

dropped packets and the cyan indicators show the successfully transmitted packets. There

is almost a pattern repeating over every few data points along with some noise.

Figure 4.4: Last 100 Node Values in a Weekday

Figure 4.5: Last 100 Node Values in a Weekend

To understand the decomposition of the weekday data, a decomposition graph is pre-

pared. Figure 4.6a illustrates the observed, trend, seasonality, and noise graphs overtime on

a weekday. Similarly, Figure 4.6b represents the time series decomposition of node values on

a weekend. The frequency for this model is set to 100 for both the plot, which means the

seasonal pattern repeats after every 100 transmissions. This is an additive decomposition

model with time on the x-axis and four decomposition graphs on the y-axis. It can be seen

that the trend seems obvious from the observed graph. The seasonal graph extracted from

the node values seems plausible and it is showing a pattern over time. The noise graph is

displaying interesting aspects of the data like repeating high variability over a period of time.
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(a) Decomposition of Weekday Time Series Data (b) Decomposition of Weekend Time Series Data

Figure 4.6: Node Values Time Series Decomposition

The following Figure 4.7a displays the correlation of node values of weekday time series

and Figure 4.7b shows the correlation of node values of weekend time series. The lag is set

to 50 to construct both the PACF plots. The sole purpose of the PACF plots in this research

is to help identify the number of node values to look back before making a forecast with

the LSTM model. In this scenario, the data is showing a strong correlation between current

node values and the last two node values on weekday time series data as well as on weekend

time series data.

(a) PACF Plot of Weekday Time Series Data (b) PACF Plot of Weekday Time Series Data

Figure 4.7: Observed Partial Autocorrelation of Time Series
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4.3 Forecasting Model Development

4.3.1 Objective

This research aims to investigate the possibility of predicting the packet drops using the

transmission history of a node during a weekday and a weekend. Persistence model as a

baseline model, LSTM and N-Beats models as deep learning models are compared with each

other in terms of node value forecast accuracy and node transmission outcome accuracy.

4.3.2 Forecasting Models

Persistence Model

To determine the baseline model performance of the deep network models, a persistence

model is implemented using the last 1000 node values as the test dataset and the rest of the

node values are utilized as a training dataset. To simplify the training with univariate data,

the node values are transformed into a supervised learning problem. A lagged representation

is generated to predict the observation at t given the observation at t-1. The persistence

model is defined as a function that returns the value sent in as input. Because no model

training or retraining is necessary, we just go through the test dataset time by time step

and receive predictions. Once predictions for each time step in the training dataset are

forecasted, they are compared to the true test values, and a SMAPE score and MAE score

is calculated.

LSTM Model

After cleaning the data, normalizing the data is important since the LSTMs are sensitive to

the scale of the input data. It is a good idea to rescale the data to the 0 to 1 range, commonly

known as normalizing. Using the scikit−learn library’s MinMaxScaler preprocessing class,

the dataset is simply normalized.

As mentioned in section 3.5.4, an LSTM layer needs a three−dimensional input and

LSTMs will generate a two−dimensional output as an evaluation from the conclusion of the
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sequence by default. We can define an LSTM model for node value forecasting problem as

shown in the Figure 4.8.

Figure 4.8: LSTM Neural Network Architecture for Forecasting Packet Droppings

The shape of the input is critical in the specification; this is what the model expects as

input for each sample in terms of the number of time steps and the number of characteristics.

We’re dealing with a univariate series, thus there is just one feature for one variable. This

model accepts 1 sample at a time and looks back at 2 timesteps since the PACF Figure 4.7a

shows that the last two node values impact the current node value. Since the node value

data is univariate, there is only one feature. After several experiments, the LSTM model is

developed with an input LSTM layer, 2 dense layers, and an output dense layer in the end.

In this problem, we build a model with 10 LSTM units in the hidden layer and the following

dense−dense hidden layers are stacked with 10 and 4 units respectively. A single numerical

value is predicted by the output layer, therefore, the final output layer has 1 dense unit.
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After fitting the node value data into the model and estimating the model’s performance

on the training dataset, the model’s competence on new and unseen data is tested using a

test dataset. Normally, this is accomplished with cross-validation for a typical classification

or regression task. The sequence of node values is crucial when working with our time series

data. Therefore, nested cross-validation is carried out using 4 subsets of data. Split 1, split

2 and split 3 are three different models that contain different sizes of training and testing

subsets. The following table 4.2 refers to the data split information. The first model is trained

with around 2000 node values and is tested with the next 1000 node values. The second

model’s training is the combination of train and test subsets of the first model. Similarly, the

third model’s training data is the merger of the second model’s training and testing subsets.

All the three model’s accuracy is calculated by the average of the three model’s results.

Table 4.2: LSTM Nested Cross-validation Split Information

Split1 Split2 Split4
WeekdayTraining 1− 2009 1− 3010 1− 4011
WeekdayTesting 2010− 3010 3011− 4011 4012− 5012
WeekendTraining 1− 2206 1− 3207 1− 4208
WeekendTesting 2207− 3207 3208− 4208 4209− 5209

.

N-Beats Model

The data must be separated into training and validation time series datasets before model-

ing. Because they are specifically intended to handle time series data, Pytorch dataloaders

are utilized for this job. The data is then converted to torch tensors to hold the infor-

mation about static and time−varying variables. Data loaders take additional parameters

like max encoder length to to specify the time series dataset’s maximum history length and

max prediction length to set the maximum forecast length. Later, hyperparameters are set

for the model. The widths are the most important hyperparameters in the NBeats model.

Each represents the breadth of a forecasting block. The first anticipates the trend by de-

fault, whereas the second forecasts seasonality. The following table 4.3 describes the best

hyperparameters for node values dataset. backcast loss ratio is the weight of backcast in

comparison to forecast when calculating the loss. A weight of 1.0 means that forecast and
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backcast loss is weighted the same. Context length is, number of time units that are used

to condition the forecasts. Also referred to as the ’lookback period’. It should be between 1

and 10 times the length of the prediction. sharing refers to whether the weights are shared

with the other blocks per stack. widths denotes the widths of the fully connected layers with

ReLu activation in the blocks.num block layers is the number of fully connected layers with

ReLu activation per block. num blocks is the number of blocks per stack. Since N−Beats is

a dual stack architecture, this model has two stacks.

Table 4.3: N-Beats Hyperparameter Configurations

Hyperparameter V alue
backcast loss ratio 1.0
context length 2000

dropout 0.1
expansion coefficient lengths [3, 7]

learning rate 0.005
num block layers [3, 3]

num blocks [3, 3]
prediction length 1000

sharing [True, True]
stack types [′trend′,′ seasonality′]
widths [256, 2048]

.

When training deep neural network topologies, N-BEATS largely depends on the well-

established notion that transmitting residual changes of the input signal via stacks of layers

gives clear advantages. The authors of N-BEATS propose the concept of backward predic-

tions, often known as ”backcasts,” in which the model attempts to recreate the time series

that it received as an input. Backcast residuals are removed from the output of the previous

fully-connected block (or the input signal in the case of the first block) and transferred to

the next block. The forecasts, a second branch of block outputs, are saved and totalled to

create the final predictions.

As illustrated in Figure 4.9, the researcher designed the N−Beats model with dual stack

approach for the node value predicting issue. Both the stacks are like a pipeline and the first

stack is very much similar to the second stack. In each stack, there are three consecutive trend

blocks followed by three consecutive seasonal blocks. Each trend of the block is completely
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linked and consists of a linear layer that accepts 2000 node values and produces 256 values.

It is then followed by a layer that has been activated using ReLu. It is followed by another

sequential layer that contains a dropout layer and a linear layer that intakes 256 values and

outputs 256 values. There is another ReLu triggered layer after the sequential layer. After

ReLu, one more sequence of dropout layer and linear layer. The block concludes with a

ReLu layer following the sequential layer. Based on 256 inputs, each block creates a linear

prediction θfl and a linear backcast θbl , each of which yields three values. The seasonal block’s

architecture is similar to the trend block’s, but the number of inputs and outputs of the linear

layers differs. The initial linear layers of the seasonal block take in 2000 values and produce

2048 values. Whereas, intermediate linear layers take in 2048 values producing 2048 values.

At last, the final linear forecast layer θbl and backcast layer θbl takes in 2048 values producing

the final output of the last 1000 values as forecast values.
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Figure 4.9: N−Beats Neural Network Architecture for Forecasting Packet Droppings
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4.4 Results

Metrics used to evaluate the models are SMAPE and MAE. Two of the scores are reported

along with the packet dropping prediction accuracy for each of the models, LSTM and N-

Beats.

4.4.1 Persistence Model Results

Finally, the Figure 4.10 illustrates the subgraphs with 250 forecasted node values against

actual node values sequentially from the expected node values in the weekday test dataset.

The plots of Persistence models show that the model is one step behind the actual values.

In the forecast statistics, there is a downward trend but the packet dropping prediction

accuracy of the model is 58.7%, which highlights the limits of the Persistence model. As

expected, the MAE of the model is 1, since the current node value follows the previous node

value. SMAPE is calculated as 0.040, this value holds minimal significance to determine the

accuracy of the model in this case.

Furthermore, the weekend test dataset is evaluated with a similar persistence model. The

following Figure 4.11 shows the precision of the persistence model in four subgraphs. Each of

the subgraphs displays the 250 actual node values and forecasted node values in a sequence.

Similar to the weekday result, the MAE of the model is 1 because of the persistence model’s

forecasting approach. The forecast error of the weekend is measured as 0.037 SMAPE, which

is slightly below the weekday’s SMAPE. The accuracy of the packet dropping prediction of

the weekend model is comparatively better than a weekday, which is about 62.1 %.
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Figure 4.10: Graphs of the Actuals vs Forecasts produced by Persistence Algorithm on a
Weekday
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Figure 4.11: Graphs of the Actuals vs Forecasts produced by Persistence Algorithm on a
Weekend
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4.4.2 LSTM Model Results

The individual results of each split of the weekday model and weekend model are discussed

in the following parts.

First Split

The initial nested Cross-validation set consists of 2009 node values for training and 1000

testing node values on the weekday. The weekend training set is a bit larger with 2206 node

values and the model is tested on 1000 node values. The figures 4.12 and 4.13 displays the

forecasted node values versus the actual node values for the first split. On both the weekday

and weekend, the first subgraph displayed a large discrepancy in the forecasts. However,

the forecasts recovered sharply and followed the actual node values very closely. The second

subgraph shows that the forecast node values are closely following the actual node values

across the timesteps on both graphs. The third subgraphs of each of the first split plots

display close to forecast and actual node values but there is a gentle rise in the gap between

forecast and actual node values. The final subgraph of the weekday plot shows the forecast

and actual node values are slightly closer than the forecast and actual values of the final

subgraph of the weekend plot.

The errors SMAPE and MAE for the weekday are calculated as 0.251 and 4 respectively.

For the same weekday, the first split’s accuracy is at 80.4%. In the same way, the SMAPE

and MAE for the first split of the weekend model are measured as 0.311 and 5 respectively.

As a result, the accuracy of the forecast values of the weekend’s first split model is measured

at 77.3%.
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Figure 4.12: Graphs of the Actuals vs Forecasts produced by First Split LSTM Model on a
Weekday
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Figure 4.13: Graphs of the Actuals vs Forecasts produced by First Split LSTM Model on a
Weekend
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Second Split

The figures 4.14 and 4.15 illustrate the forecasting results of the weekday model and weekend

model. This second split is part of the nested cross-validation process to validate the LSTM

model. Its training dataset is the combination of the node values used in training and testing

subsets of the first split. The weekday subgraphs show interesting results. The first graph

begins with poor forecasts, however, the forecast node values quickly close the gap and

continue to bring the node values towards the actual values. This process continues into the

second subgraph where the LSTM model caught most of the turbulence in the node values.

In the third subgraph, the forecast node values begin converging towards the actual values

and almost touch the actual node values trendline. In the final subgraph of the weekday

results, the forecast node values and actual node values adjoin the actual node values and

remain merged for most of the remaining timesteps. Although the trendlines of actual and

forecast node values run very close, the errors SMAPE and MAE are measured as 0.306 and

6 respectively. The accuracy of the obtained forecasted node values is 79.4%.

The weekend’s first subgraph, like the first subgraph of the workday, is generated by

significantly erroneous forecast node values. The model rapidly followed up to the real

node values and stayed that way for the rest of the subgraph. The second subgraph is also

displaying that the forecast node values are running very close to the actual node values

and continues to be closed for the rest of the graph. The second subgraph likewise shows

that the forecast node values are extremely close to the actual node values and will remain

so for the remainder of the graph. Similar to the second subgraph, the third subgraph also

shows that the forecast node values are maintained relative to the actual node values for

the eternity of the graph. The last subplot illustrates the weekend model’s outstanding

forecasting performance by forecasting node values that are significantly closer to the actual

node values. This model has the lowest SMAPE and MAE of 0.111 and 2, respectively. The

accuracy of packet dropping prediction is 62.4 %.
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Figure 4.14: Graphs of the Actuals vs Forecasts produced by Second Split LSTM Model on
a Weekday
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Figure 4.15: Graphs of the Actuals vs Forecasts produced by Second Split LSTM Model on
a Weekend
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Third Split

Finally, the third split is the final stage of this LSTM model’s nested cross-validation. The

third split’s training dataset is created by stacking the second split’s training and testing

datasets. The testing dataset is made up of the remaining 1000 node values from the weekday

and weekend node value datasets. The results are split into four subgraphs after the model

is trained using the training dataset and evaluated with the testing dataset, as illustrated in

the Figure 4.16. The first subgraph shows that the difference between forecasts and actuals

narrowed quickly, and the graph continues with a tiny gap between forecasts and actuals for

the remainder of the node values. In terms of the difference between forecasts and actuals,

the second subgraph is quite similar to the third subgraph. For the majority of the graphs

in both subgraphs, the forecast node values trendline is parallel to the actual node values.

The forecasts and actuals are quite near in the last subgraph, although there is usually a

gap between them. The accuracy of the result in terms of packet dropping prediction is

determined as 76.8%. Using the same result, the errors SMAPE and MAE of the model are

0.348 and 9, respectively.

For nested cross-validation, the weekend node values are divided into three groups. The

latest 1000 node values are stored in the final split’s testing set. Following model training, the

model’s efficiency is assessed by utilizing the unused 1000 node values. When compared to the

weekday third split outcomes, the weekend model’s subgraphs show a significant divergence

in all four of them. The first subgraph shows that the model attempts to close the gap

between forecasts and actuals. However, the gap is still wide from the actual node values

trendline. The second subgraph shows that the predicted and actual values are parallel with

a substantial difference between them. As illustrated in the third subgraph, the distance

steadily widens. The final subgraph demonstrates that the model is unable to keep up with

the actual node values but is nearly able to comprehend the variations in the outcome. This

model accomplished only 62.2% packet dropping prediction accuracy with errors SMAPE

and MAE as 1.011 and 28, respectively.
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Figure 4.16: Graphs of the Actuals vs Forecasts produced by Third Split LSTM Model on a
Weekday
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Figure 4.17: Graphs of the Actuals vs Forecasts produced by Third Split LSTM Model on a
Weekend



84 CHAPTER 4. EMPIRICAL STUDIES

4.4.3 N-Beats Model Results

N-Beats architecture described in section 4.3.2 is tested and analyzed on the last 1000 node

values for the weekday node values dataset. The Figure 4.18 presents the weekday node

value forecasts against actuals in four subgraphs. Each of the subgraphs represents the 250

values in ascending order. The first subgraph shows the first 250 values of the result. Even

though there is a significant oscillation in the forecasts, the forecasts are closely following

the actuals and the gap is very minimal. However, the growth in the gap can be observed

in the second subgraph that shows the next 250 forecast values against actuals. The gap is

increased significantly between the forecasts and the actuals as shown in the third subgraph.

In the final subgraph, the forecasts have completely diverged from the actuals. The accuracy

of the weekday model in terms of packet dropping prediction is standing at 62.3%. The errors

SMAPE and MAE are measured as 0.811 and 21, respectively.

In a similar way, The weekend node value dataset is evaluated using the last 1000 node

values. The results are illustrated in the Figure 4.19 as four subgraphs in the increasing

order. The first subgraph resembles the first subgraph in the Figure 4.19, the forecasts

closely follow the actuals. Unlike the second subgraph in Figure 4.19, the gap between

forecasts and actuals remains minimal until the third subgraph. In this third subgraph, the

divergence can be observed from the middle section. The gap intensified as the timesteps

increased, as shown in the final subgraph of Figure 4.19. statistical measures reveal that

the SMAPE and MAE are 0.730 and 21. The precision of the packet dropping prediction is

56.5%.
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Figure 4.18: Graphs of the Actuals vs Forecasts produced by N-Beats Algorithm on a Week-
day
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Figure 4.19: Graphs of the Actuals vs Forecasts produced by N-Beats Algorithm on a Week-
end
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4.4.4 Discussion

The table 4.4 nested results displays the statistical results of the LSTM model on a weekday

and a weekend using nested cross-validation. Overall, the weekday performed better in

terms of both packet dropping accuracy and forecast node value errors. The average of

the three models is calculated to obtain the comprehensive result of the LSTM model for

both weekday and weekend node values forecasting. The weekday LSTM model achieved a

respectable packet dropping prediction with 78.9% accuracy when compared to the weekend

LSTM model’s packet dropping predicting ability which is 67.3% accurate. The Weekday

LSTMmodel performed well in all three of the splits almost uniformly. According to weekend

LSTM model outcomes, the third split result impoverished the overall model’s end result.

Table 4.4: Nested Cross-validation Results of LSTM Model

Weekday SMAPE MAE Accuracy
Split1 0.251 4 80.4%
Split2 0.306 6 79.4%
Split3 0.348 9 76.8%
Average 0.302 6 78.9%
Weekend SMAPE MAE Accuracy
Split1 0.311 5 77.3%
Split2 0.111 2 62.4%
Split3 1.011 28 62.2%
Average 0.477 12 67.3%

.

Individual results of each forecasting approach are displayed in the table 4.5. Even

though the persistence model demonstrates the decent capabilities to forecast node values,

they are the same as their preceding node values. Therefore, this model becomes unfit for

forecasting if there are more variations in the node values. On the other hand, the LSTM

model excellently captured the fluctuations in the node values when compared to the N-

Beats model. Unexpectedly, the N-Beats model failed to grasp the variations in the node

values as well as the node values themselves. The aggregated result of the LSTM model

on a weekday is by far the best model among the conducted experiments. Both the LSTM

models of weekday and weekend overcame the accuracy of packet dropping prediction of all

other forecasting models used in this research.
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Table 4.5: Comparison of Three Forecasting Approaches

Weekday SMAPE MAE Accuracy
PersistenceAlgorithm 0.040 1 58.7%

LSTMModel 0.302 6 78.9%
N −BeatsModel 0.811 21 62.3%

Weekend SMAPE MAE Accuracy
PersistenceAlgorithm 0.037 1 62.1%

LSTMModel 0.477 12 67.3%
N −BeatsModel 0.730 21 56.5%

.

4.5 Scheduling & Energy Models Simulation and Per-

formance Evaluation

4.5.1 CPU Utilization Pre-simulation

This section finally gives an insight into the observed results to confirm that CPU utiliza-

tion of an idle CPU is more than the CPU utilization time to switch between on and off

states of VMs. Since the energy consumption of a VM is directly proportional to the CPU

utilization, The researcher simulates the current study using Amazon Web Services (AWS)

virtual machines. This allows the researcher to observe the difference in CPU utilization

when VM kept idle and when VM was powering on and off at a regular interval [41] [33] .

All the experiments are observed in virtual machines configured with 8 CPUs, 32 GB RAM,

with up to 5 GB rate of data transfer. Figure 4.20 shows the status of the virtual machine

when they are idle. The line graph illustrates how CPU utilization changes with time. The

researcher observed that there is almost a constant CPU utilization with no considerable

variation in the graph, while the CPU utilization fluctuates between 0.5 and 1 percent with

time.

The Figure 4.21 illustrates the CPU utilization over time when the virtual machine is

changing status from active to suspend at fixed intervals. The connected dots are the CPU

utilization for an individual task. Although initially, there is a steep increase of up to 40

percent for the VM to configure, the rest of the graph is widespread during the time ranging

between 0 and 15 percent of CPU utilization. Yet, there is no substantial CPU utilization
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Figure 4.20: CPU Utilization with Idle VM

between any two consecutive suspended statuses. Figure 4.21 clearly shows that there is less

CPU utilization as compared to those demonstrated in Fig. 4.20.
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Figure 4.21: CPU Utilization with Powering On and Off a VM

4.5.2 Simulation Methodology

The scheduling strategy is demonstrated using the CloudSim simulator. CloudSim aims to

simulate cloud environments and its features. It allowed us to fully customize the cloud

completely within various levels. Massive community support for CloudSim is also a core
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reason to choose.

4.5.3 Simulation Configurations

Our simulation is conducted within the CloudSim 4.0 environment in a windows 10 operating

system. The system is running on a laptop with Intel(R) Core (TM) i7-8750H CPU @

2.20GHz and 16-GB RAM. CPU utilization experiments are conducted using Amazon EC2

services with a basic instance of 1 vCPU and 1GB RAM.

4.5.4 Simulation Results

Figure 4.22 illustrates how the time to execute changes with the size of the task when the

CPU frequency is constant. The researcher dynamically change the input task size parameter

to observe the time to execute for a given task. The time to execute factor is shown in the

x-axis, and the size of the task is expressed as the y-axis. The smaller the size of the task is,

it hardly takes any time. As the size is increasing, the slope remains constant, because the

task size is very small; therefore, a VM is underwhelmed and completes the task in a very

small time. This plateau continues until a sudden spike happens, where the task is utilizing

the most available resources. There is another sharp change when the VM is overwhelmed

by the size of the task and the task has to wait until the last of its sub-task instructions are

executed.

The researcher examines the impact of size on the VM with the help of Figure 4.23, as to

how a VM handles a batch of tasks while maintaining the constant execution time. This line

graph maintains a constant slope showing that as the size of the task increases, it is more

likely the number of instructions required to execute per task increases at a constant rate.

MIPS is the metric used to measure the VM’s speed because MIPS is directly proportional

to CPU cycles. Figure 4.23 proves that batch scheduling is an optimum solution for the best

performance.

The results demonstrated in Figures 4.22 and 4.23 show that when applying a hybrid

algorithm performs much better, as expected. It should be noted that our proposed strategy

is functioning effectively because it is working better with small data sizes, considering the

traditional acknowledgement packet size.
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Figure 4.23: Frequency of VMs Using VFA



Chapter 5

Conclusion and Future Work

This chapter summarises the work done in this thesis and presents the theory and results

of the experiments reported in Chapters 3 and 4. We also discuss potential possibilities for

continued research on machine learning models for packet dropping prediction tasks using

cloud and acknowledgment packets.

5.1 Conclusion

This thesis has introduced a novel architecture called Cloud Acknowledge Scheme that must

deal with the packet droppings by the intermediate routers. The researcher designed sev-

eral algorithms called Sender-site Algorithm, Cloud-site Algorithm, Intermediate Node-site

Algorithm, Variable Time Algorithm and Variable Frequency Algorithm to monitor nodes

and their transmissions in a network, as well as record the outcomes of the transmissions.

Additionally, the acknowledgement packet structure has been designed and modified to in-

corporate some additional information that helps in identifying the location of the data

packet during packet transmission. Moreover, an energy-aware hybrid scheduling strategy

for the cloud is designed and tested by the investigator to accommodate a massive number

of transmissions across the network.

Empirically, the current work emphasizes proving the existence of possibilities to predict

the transmission outcomes in a network. One solution that has been explored in this research

is to utilize machine learning techniques to predict a transmission outcome. Thus, it has

91
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been determined that with enough history of transmission outcomes of an intermediate node,

we can predict the outcome of a transmission that passes through a particular intermediate

node. In order to validate the proposed theory, there is a need to collect a node’s transmis-

sion history, Subsequently, train and evaluate machine learning models. In conclusion, the

results accomplished by the developed machine learning models support the hypothesis of

this research.

5.2 Future Work

The researcher also does have a future plan, an extention to the current work, to implement

CACKS architecture in a network simulator that can utilize high-level machine learning

models. Current CACKS design only considers a situation where an intermediate node

does not respond. In the extention to this research, CACKS can be redesigned to consider

multiple scenarios of packet dropping. Similarly, scheduling strategy can include various

green computing techniques to reduce the energy consumption. Eventually, it also has been

planned to evaluate this approach in several real-world nodes and in several large networks.

However, the researcher’s current best model predicts the transmission outcome with around

78.9% accuracy, most of this accuracy is due to the fact that the model is trained using

the data that has a high drop rate. Therefore, the researcher expects to test the present

approach, implemented in the current study, with a variety of nodes that has different drop

rates. Present machine learning models use univariate data to forecast the outcome of future

transmissions. However, the dataset lacks several key features like time, date, packet size,

transmission protocol, etc. Therefore, it is preferred to explore multivariate datasets to train

and evaluate this research’s machine learning models.
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